使用ES对中文文章进行分词,并进行词频统计排序
前言:首先有这样一个需求,需要统计一篇10000字的文章,需要统计里面哪些词出现的频率比较高,这里面比较重要的是如何对文章中的一段话进行分词,例如“北京是×××的首都”,“北京”,“×××”,“中华”,“华人”,“人民”,“共和国”,“首都”这些是一个词,需要切分出来,而“京是”“民共”这些就不是有意义的词,所以不能分出来。这些分词的规则如果自己去写,是一件很麻烦的事,利用开源的IK分词,就可以很容易的做到。并且可以根据分词的模式来决定分词的颗粒度。
我们拥有10年网页设计和网站建设经验,从网站策划到网站制作,我们的网页设计师为您提供的解决方案。为企业提供成都做网站、成都网站制作、微信开发、成都小程序开发、移动网站建设、H5场景定制、等业务。无论您有什么样的网站设计或者设计方案要求,我们都将富于创造性的提供专业设计服务并满足您的需求。
ik_max_word: 会将文本做最细粒度的拆分,比如会将“×××国歌”拆分为“×××,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;
ik_smart: 会做最粗粒度的拆分,比如会将“×××国歌”拆分为“×××,国歌”。
一:首先要准备环境
如果有ES环境可以跳过前两步,这里我假设你只有一台刚装好的CentOS6.X系统,方便你跑通这个流程。
(1)安装jdk。
$ wget http://download.oracle.com/otn-pub/java/jdk/8u111-b14/jdk-8u111-linux-x64.rpm $ rpm -ivh jdk-8u111-linux-x64.rpm
(2)安装ES
$ wget https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/rpm/elasticsearch/2.4.2/elasticsearch-2.4.2.rpm $ rpm -iv elasticsearch-2.4.2.rpm
(3)安装IK分词器
在github上面下载1.10.2版本的ik分词,注意:es版本为2.4.2,兼容的版本为1.10.2。
$ mkdir /usr/share/elasticsearch/plugins/ik $ wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v1.10.2/elasticsearch-analysis-ik-1.10.2.zip $ unzip elasticsearch-analysis-ik-1.10.2.zip -d /usr/share/elasticsearch/plugins/ik
(4)配置ES
$ vim /etc/elasticsearch/elasticsearch.yml ###### Cluster ###### cluster.name: test ###### Node ###### node.name: test-10.10.10.10 node.master: true node.data: true ###### Index ###### index.number_of_shards: 5 index.number_of_replicas: 0 ###### Path ###### path.data: /data/elk/es path.logs: /var/log/elasticsearch path.plugins: /usr/share/elasticsearch/plugins ###### Refresh ###### refresh_interval: 5s ###### Memory ###### bootstrap.mlockall: true ###### Network ###### network.publish_host: 10.10.10.10 network.bind_host: 0.0.0.0 transport.tcp.port: 9300 ###### Http ###### http.enabled: true http.port : 9200 ###### IK ######## index.analysis.analyzer.ik.alias: [ik_analyzer] index.analysis.analyzer.ik.type: ik index.analysis.analyzer.ik_max_word.type: ik index.analysis.analyzer.ik_max_word.use_smart: false index.analysis.analyzer.ik_smart.type: ik index.analysis.analyzer.ik_smart.use_smart: true index.analysis.analyzer.default.type: ik
(5)启动ES
$ /etc/init.d/elasticsearch start
(6)检查es节点状态
$ curl localhost:9200/_cat/nodes?v #看到一个节点正常 host ip heap.percent ram.percent load node.role master name 10.10.10.10 10.10.10.10 16 52 0.00 d * test-10.10.10.10 $ curl localhost:9200/_cat/health?v #集群状态为green epoch timestamp cluster status node.total node.data shards pri relo init 1483672233 11:10:33 test green 1 1 0 0 0 0
二:检测分词功能
(1)创建测试索引
$ curl -XPUT http://localhost:9200/test
(2)创建mapping
$ curl -XPOST http://localhost:9200/test/fulltext/_mapping -d' { "fulltext": { "_all": { "analyzer": "ik" }, "properties": { "content": { "type" : "string", "boost" : 8.0, "term_vector" : "with_positions_offsets", "analyzer" : "ik", "include_in_all" : true } } } }'
(3)测试数据
$ curl 'http://localhost:9200/index/_analyze?analyzer=ik&pretty=true' -d '{ "text":"美国留给伊拉克的是个烂摊子吗" }'
返回内容:
{ "tokens" : [ { "token" : "美国", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "留给", "start_offset" : 2, "end_offset" : 4, "type" : "CN_WORD", "position" : 1 }, { "token" : "伊拉克", "start_offset" : 4, "end_offset" : 7, "type" : "CN_WORD", "position" : 2 }, { "token" : "伊", "start_offset" : 4, "end_offset" : 5, "type" : "CN_WORD", "position" : 3 }, { "token" : "拉", "start_offset" : 5, "end_offset" : 6, "type" : "CN_CHAR", "position" : 4 }, { "token" : "克", "start_offset" : 6, "end_offset" : 7, "type" : "CN_WORD", "position" : 5 }, { "token" : "个", "start_offset" : 9, "end_offset" : 10, "type" : "CN_CHAR", "position" : 6 }, { "token" : "烂摊子", "start_offset" : 10, "end_offset" : 13, "type" : "CN_WORD", "position" : 7 }, { "token" : "摊子", "start_offset" : 11, "end_offset" : 13, "type" : "CN_WORD", "position" : 8 }, { "token" : "摊", "start_offset" : 11, "end_offset" : 12, "type" : "CN_WORD", "position" : 9 }, { "token" : "子", "start_offset" : 12, "end_offset" : 13, "type" : "CN_CHAR", "position" : 10 }, { "token" : "吗", "start_offset" : 13, "end_offset" : 14, "type" : "CN_CHAR", "position" : 11 } ] }
三:开始导入真正的数据
(1)将中文的文本文件上传到linux上面。
$ cat /tmp/zhongwen.txt 京津冀重污染天气持续 督查发现有企业恶意生产 《孤芳不自赏》被指“抠像演戏” 制片人:特效不到位 奥巴马不顾特朗普反对坚持外迁关塔那摩监狱囚犯 . . . . 韩媒:日本叫停韩日货币互换磋商 韩财政部表遗憾 中国百万年薪须交40多万个税 精英无奈出国发展
注意:确保文本文件编码为utf-8,否则后面传到es会乱码。
$ vim /tmp/zhongwen.txt
命令模式下输入:set fineencoding,即可看到fileencoding=utf-8。
如果是 fileencoding=utf-16le,则输入:set fineencoding=utf-8
(2)创建索引和mapping
创建索引
$ curl -XPUT http://localhost:9200/index
创建mapping #对要分词的字段message进行分词器设置和fielddata设置。
$ curl -XPOST http://localhost:9200/index/logs/_mapping -d ' { "logs": { "_all": { "analyzer": "ik" }, "properties": { "path": { "type": "string" }, "@timestamp": { "format": "strict_date_optional_time||epoch_millis", "type": "date" }, "@version": { "type": "string" }, "host": { "type": "string" }, "message": { "include_in_all": true, "analyzer": "ik", "term_vector": "with_positions_offsets", "boost": 8, "type": "string", "fielddata" : { "format" : "true" } }, "tags": { "type": "string" } } } }'
(3)使用logstash 将文本文件写入到es中
安装logstash
$ wget https://download.elasticsearch.org/elasticsearch/release/org/elasticsearch/distribution/rpm/elasticsearch/2.1.1/elasticsearch-2.1.1.rpm $ rpm -ivh logstash-2.1.1.rpm
配置logstash
$ vim /etc/logstash/conf.d/logstash.conf input { file { codec => 'json' path => "/tmp/zhongwen.txt" start_position => "beginning" } } output { elasticsearch { hosts => "10.10.10.10:9200" index => "index" flush_size => 3000 idle_flush_time => 2 workers => 4 } stdout { codec => rubydebug } }
启动
$ /etc/init.d/logstash start
查看stdout输出,就能判断是否写入es中。
$ tail -f /var/log/logstash.stdout
(4)检查索引中是否有数据
$ curl 'localhost:9200/_cat/indices/index?v' #可以看到有6007条数据。 health status index pri rep docs.count docs.deleted store.size pri.store.size green open index 5 0 6007 0 2.5mb 2.5mb
$ curl -XPOST "http://localhost:9200/index/_search?pretty" { "took" : 1, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 5227, "max_score" : 1.0, "hits" : [ { "_index" : "index", "_type" : "logs", "_id" : "AVluC7Dpbw7ZlXPmUTSG", "_score" : 1.0, "_source" : { "message" : "中国百万年薪须交40多万个税 精英无奈出国发展", "tags" : [ "_jsonparsefailure" ], "@version" : "1", "@timestamp" : "2017-01-05T09:52:56.150Z", "host" : "0.0.0.0", "path" : "/tmp/333.log" } }, { "_index" : "index", "_type" : "logs", "_id" : "AVluC7Dpbw7ZlXPmUTSN", "_score" : 1.0, "_source" : { "message" : "奥巴马不顾特朗普反对坚持外迁关塔那摩监狱囚犯", "tags" : [ "_jsonparsefailure" ], "@version" : "1", "@timestamp" : "2017-01-05T09:52:56.222Z", "host" : "0.0.0.0", "path" : "/tmp/333.log" } }
四:开始计算分词的词频,排序
(1)查询所有词出现频率最高的top10
$ curl -XGET "http://localhost:9200/index/_search?pretty" -d' { "size" : 0, "aggs" : { "messages" : { "terms" : { "size" : 10, "field" : "message" } } } }'
返回结果
{ "took" : 3, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 6007, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "messages" : { "doc_count_error_upper_bound" : 154, "sum_other_doc_count" : 94992, "buckets" : [ { "key" : "一", "doc_count" : 1582 }, { "key" : "后", "doc_count" : 560 }, { "key" : "人", "doc_count" : 541 }, { "key" : "家", "doc_count" : 538 }, { "key" : "出", "doc_count" : 489 }, { "key" : "发", "doc_count" : 451 }, { "key" : "个", "doc_count" : 440 }, { "key" : "州", "doc_count" : 421 }, { "key" : "岁", "doc_count" : 405 }, { "key" : "子", "doc_count" : 402 } ] } } }
(2)查询所有两字词出现频率最高的top10
$ curl -XGET "http://localhost:9200/index/_search?pretty" -d' { "size" : 0, "aggs" : { "messages" : { "terms" : { "size" : 10, "field" : "message", "include" : "[\u4E00-\u9FA5][\u4E00-\u9FA5]" } } }, "highlight": { "fields": { "message": {} } } }'
返回
{ "took" : 22, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 6007, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "messages" : { "doc_count_error_upper_bound" : 73, "sum_other_doc_count" : 42415, "buckets" : [ { "key" : "女子", "doc_count" : 291 }, { "key" : "男子", "doc_count" : 264 }, { "key" : "竟然", "doc_count" : 257 }, { "key" : "上海", "doc_count" : 255 }, { "key" : "这个", "doc_count" : 238 }, { "key" : "女孩", "doc_count" : 174 }, { "key" : "这些", "doc_count" : 167 }, { "key" : "一个", "doc_count" : 159 }, { "key" : "注意", "doc_count" : 143 }, { "key" : "这样", "doc_count" : 142 } ] } } }
(3)查询所有两字词且不包含“女”字,出现频率最高的top10
curl -XGET "http://localhost:9200/index/_search?pretty" -d' { "size" : 0, "aggs" : { "messages" : { "terms" : { "size" : 10, "field" : "message", "include" : "[\u4E00-\u9FA5][\u4E00-\u9FA5]", "exclude" : "女.*" } } }, "highlight": { "fields": { "message": {} } } }'
返回
{ "took" : 19, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 5227, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "messages" : { "doc_count_error_upper_bound" : 71, "sum_other_doc_count" : 41773, "buckets" : [ { "key" : "男子", "doc_count" : 264 }, { "key" : "竟然", "doc_count" : 257 }, { "key" : "上海", "doc_count" : 255 }, { "key" : "这个", "doc_count" : 238 }, { "key" : "这些", "doc_count" : 167 }, { "key" : "一个", "doc_count" : 159 }, { "key" : "注意", "doc_count" : 143 }, { "key" : "这样", "doc_count" : 142 }, { "key" : "重庆", "doc_count" : 142 }, { "key" : "结果", "doc_count" : 137 } ] } } }
还有更多的分词策略,例如设置近义词(设置“番茄”和“西红柿”为同义词,搜索“番茄”,“西红柿”也会出来),设置拼音分词(搜索“zhonghua”,“中华”也可以搜索出来)等等。
当前标题:使用ES对中文文章进行分词,并进行词频统计排序
网页链接:http://myzitong.com/article/pdpojd.html