PyTorch普通卷积和空洞卷积实例-创新互联
如下所示:
成都创新互联公司-专业网站定制、快速模板网站建设、高性价比嘉祥网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式嘉祥网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖嘉祥地区。费用合理售后完善,10多年实体公司更值得信赖。import numpy as np from torchvision.transforms import Compose, ToTensor from torch import nn import torch.nn.init as init def transform(): return Compose([ ToTensor(), # Normalize((12,12,12),std = (1,1,1)), ]) arr = range(1,26) arr = np.reshape(arr,[5,5]) arr = np.expand_dims(arr,2) arr = arr.astype(np.float32) # arr = arr.repeat(3,2) print(arr.shape) arr = transform()(arr) arr = arr.unsqueeze(0) print(arr) conv1 = nn.Conv2d(1, 1, 3, stride=1, bias=False, dilation=1) # 普通卷积 conv2 = nn.Conv2d(1, 1, 3, stride=1, bias=False, dilation=2) # dilation就是空洞率,即间隔 init.constant_(conv1.weight, 1) init.constant_(conv2.weight, 1) out1 = conv1(arr) out2 = conv2(arr) print('standare conv:\n', out1.detach().numpy()) print('dilated conv:\n', out2.detach().numpy())
文章题目:PyTorch普通卷积和空洞卷积实例-创新互联
转载来源:http://myzitong.com/article/pecci.html