sqlserver检索慢,sql数据库查询慢的原因
sql server搜索相当慢怎么处理???
到网上找一个内存管理工具,对内存进行定时管理,比如你的机器从重启到内存被SQL占用完要1小时,你可以把时间设置成30-45分钟清理一清内存,也可能用自动的那种,可能30秒一次吧。
曲沃ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
要不然把你的SQL占用内存设为固定值,可能是你物理内存的50%左右,看你的具体情况了
sql server数据库查询慢怎么优化
在安装有SQLServer数据库的计算机上,我们在使用数据库的过程中,有时候会在任务管理器里发现sqlservr.exe这个进程的内存和CPU占用率较高。
接下来我们来看一下,如何解决上面这个问题,需要设置SQLServer数据库的内存配置。登录数据库,这里使用的是SQLServer2008,右键点击最上方的服务器名,在弹出的菜单中,点击【属性】
打开服务器属性窗口。默认显示的是第一项【常规】内容,点击第二项【内存】进行内存配置。
点击【内存】后,打开服务器内存选项配置界面。这里的【使用AWE分配内存】可以对内存进行扩展支持,我们要做的是更改下方的最大服务器内存。这个数值根据自己服务器内存大小来做适当设置。
5
个人建议设置本机内存的一半或稍微高一点,如机器内存为2G,那么我们这里填写1000。需要注意的是内存设置调小以后,在数据库执行较复杂SQL语句的时候,可能会比较慢,出现这种情况,我们再适当上调最大内存配置大小。
如何解决SQL查询速度太慢?
1. 执行计划中明明有使用到索引,为什么执行还是这么慢?
2. 执行计划中显示扫描行数为 644,为什么 slow log 中显示 100 多万行?
a. 我们先看执行计划,选择的索引 “INDX_BIOM_ELOCK_TASK3(TASK_ID)”。结合 sql 来看,因为有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能会更差,优化器选择这个索引避免了排序。
那为什么不选 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很简单,TASK_DATE 字段区分度太低了,走这个索引需要扫描的行数很大,而且还要进行额外的排序,优化器综合判断代价更大,所以就不选这个索引了。不过如果我们强制选择这个索引(用 force index 语法),会看到 SQL 执行速度更快少于 10s,那是因为优化器基于代价的原则并不等价于执行速度的快慢;
b. 再看执行计划中的 type:index,"index" 代表 “全索引扫描”,其实和全表扫描差不多,只是扫描的时候是按照索引次序进行而不是行,主要优点就是避免了排序,但是开销仍然非常大。
Extra:Using where 也意味着扫描完索引后还需要回表进行筛选。一般来说,得保证 type 至少达到 range 级别,最好能达到 ref。
在第 2 点中提到的“慢日志记录Rows_examined: 1161559,看起来是全表扫描”,这里更正为“全索引扫描”,扫描行数确实等于表的行数;
c. 关于执行计划中:“rows:644”,其实这个只是估算值,并不准确,我们分析慢 SQL 时判断准确的扫描行数应该以 slow log 中的 Rows_examined 为准。
4. 优化建议:添加组合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)
优化过程:
TASK_DATE 字段存在索引,但是选择度很低,优化器不会走这个索引,建议后续可以删除这个索引:
select count(*),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK;+------------+---------------------------+| count(*) | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+
在这个 sql 中 REL_DEVID 字段从命名上看选择度较高,通过下面 sql 来检验确实如此:
select count(*),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK;+----------+---------------------------+| count(*) | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+
由于有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 组合选择度 100%:
select count(*),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK;+----------+-----------------------------------+| count(*) | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+
在测试环境添加 REL_DEVID,TASK_ID 组合索引,测试 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID);
添加索引后执行计划:
这里还要注意一点“隐式转换”:REL_DEVID 字段数据类型为 varchar,需要在 sql 中加引号:AND T.REL_DEVID = 000000025xxx AND T.REL_DEVID = '000000025xxx'
执行时间从 10s+ 降到 毫秒级别:
1 row in set (0.00 sec)
结论
一个典型的 order by 查询的优化,添加更合适的索引可以避免性能问题:执行计划使用索引并不意味着就能执行快。
当前文章:sqlserver检索慢,sql数据库查询慢的原因
文章地址:http://myzitong.com/article/phdgce.html