如何进行NVIDIA及k8s-device-plugin源码分析
如何进行NVIDIA及k8s-device-plugin源码分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联建站专业为企业提供巴南网站建设、巴南做网站、巴南网站设计、巴南网站制作等企业网站建设、网页设计与制作、巴南企业网站模板建站服务,十多年巴南做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
k8s-device-plugin内部实现原理图
在Kubernetes如何通过Device Plugins来使用NVIDIA GPU中,对NVIDIA/k8s-device-plugin的工作原理进行了深入分析,为了方便我们在这再次贴出其内部实现原理图:
PreStartContainer和GetDevicePluginOptions两个接口,在NVIDIA/k8s-device-plugin中可以忽略,可以认为是空实现。我们主要关注ListAndWatch和Allocate的实现。
启动
一切从main函数开始!核心的代码如下:
func main() { log.Println("Loading NVML") if err := nvml.Init(); err != nil { select {} } ... log.Println("Fetching devices.") if len(getDevices()) == 0 { select {} } log.Println("Starting FS watcher.") watcher, err := newFSWatcher(pluginapi.DevicePluginPath) if err != nil { os.Exit(1) } ... log.Println("Starting OS watcher.") sigs := newOSWatcher(syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT) restart := true var devicePlugin *NvidiaDevicePlugin L: for { if restart { if devicePlugin != nil { devicePlugin.Stop() } devicePlugin = NewNvidiaDevicePlugin() if err := devicePlugin.Serve(); err != nil { ... } else { restart = false } } select { case event := <-watcher.Events: if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create { restart = true } case err := <-watcher.Errors: case s := <-sigs: switch s { case syscall.SIGHUP: restart = true default: devicePlugin.Stop() break L } } } }
相关说明不需多说,请参考下面的流程逻辑图:
Serve
k8s-device-plugin启动流程中,devicePlugin.Serve
负责启动gRPC Server Start对外提供服务,然后把自己注册到kubelet。
// Serve starts the gRPC server and register the device plugin to Kubelet func (m *NvidiaDevicePlugin) Serve() error { err := m.Start() if err != nil { log.Printf("Could not start device plugin: %s", err) return err } log.Println("Starting to serve on", m.socket) err = m.Register(pluginapi.KubeletSocket, resourceName) if err != nil { log.Printf("Could not register device plugin: %s", err) m.Stop() return err } log.Println("Registered device plugin with Kubelet") return nil }
Start
Start的代码如下:
// Start starts the gRPC server of the device plugin func (m *NvidiaDevicePlugin) Start() error { err := m.cleanup() if err != nil { return err } sock, err := net.Listen("unix", m.socket) if err != nil { return err } m.server = grpc.NewServer([]grpc.ServerOption{}...) pluginapi.RegisterDevicePluginServer(m.server, m) go m.server.Serve(sock) // Wait for server to start by launching a blocking connexion conn, err := dial(m.socket, 5*time.Second) if err != nil { return err } conn.Close() go m.healthcheck() return nil }
更加深入的代码调用关系,这里不多介绍,直接贴出Start的实现逻辑图:
Start流程中负责创建nvidia.sock文件。
需要特别说明healthcheck
部分:
healthcheck启动协程对管理的devices进行健康状态监控,一旦发现有device unhealthy,则发送到NvidiaDevicePlugin的health channel。device plugin的ListAndWatch会从health channel中获取这些unhealthy devices,并通知到kubelet进行更新。
只监控
nvmlEventTypeXidCriticalError
事件,一旦监控到某个device的这个Event,就认为该device unhealthy。关于nvmlEventTypeXidCriticalError
的说明,请参考NVIDIA的nvml api文档。可以通过设置NVIDIA device plugin Pod内的环境变量
DP_DISABLE_HEALTHCHECKS
为”all”来取消healthcheck。不设置或者设置为其他值都会启动healthcheck,默认部署时不设置。
Register
Start之后,接着进入Register流程,其代码如下:
// Register registers the device plugin for the given resourceName with Kubelet. func (m *NvidiaDevicePlugin) Register(kubeletEndpoint, resourceName string) error { conn, err := dial(kubeletEndpoint, 5*time.Second) if err != nil { return err } defer conn.Close() client := pluginapi.NewRegistrationClient(conn) reqt := &pluginapi.RegisterRequest{ Version: pluginapi.Version, Endpoint: path.Base(m.socket), ResourceName: resourceName, } _, err = client.Register(context.Background(), reqt) if err != nil { return err } return nil }
Register的实现流程图如下:
注册的Resource Name是
nvidia.com/gpu
注册的Version是
v1beta1
Stop
Stop的代码如下:
// Stop stops the gRPC server func (m *NvidiaDevicePlugin) Stop() error { if m.server == nil { return nil } m.server.Stop() m.server = nil close(m.stop) return m.cleanup() }
Stop的实现流程图如下:
Stop流程中负责停止gRPC Server,并删除nvidia.sock。
ListAndWatch
ListAndWatch接口主要负责监控health channel,发现有gpu变成unhealthy后,将完成的gpu list信息(ID和health状态)发送给kubelet进行更新。
// ListAndWatch lists devices and update that list according to the health status func (m *NvidiaDevicePlugin) ListAndWatch(e *pluginapi.Empty, s pluginapi.DevicePlugin_ListAndWatchServer) error { s.Send(&pluginapi.ListAndWatchResponse{Devices: m.devs}) for { select { case <-m.stop: return nil case d := <-m.health: // FIXME: there is no way to recover from the Unhealthy state. d.Health = pluginapi.Unhealthy s.Send(&pluginapi.ListAndWatchResponse{Devices: m.devs}) } } }
ListAndWatch的实现流程图如下:
Allocate
Allocate负责接口kubelet为Container请求分配gpu的请求,请求的结构体如下:
// - Allocate is expected to be called during pod creation since allocation // failures for any container would result in pod startup failure. // - Allocate allows kubelet to exposes additional artifacts in a pod's // environment as directed by the plugin. // - Allocate allows Device Plugin to run device specific operations on // the Devices requested type AllocateRequest struct { ContainerRequests []*ContainerAllocateRequest `protobuf:"bytes,1,rep,name=container_requests,json=containerRequests" json:"container_requests,omitempty"` } type ContainerAllocateRequest struct { DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"` }
device plugin Allocate的Response结构体定义如下:
// AllocateResponse includes the artifacts that needs to be injected into // a container for accessing 'deviceIDs' that were mentioned as part of // 'AllocateRequest'. // Failure Handling: // if Kubelet sends an allocation request for dev1 and dev2. // Allocation on dev1 succeeds but allocation on dev2 fails. // The Device plugin should send a ListAndWatch update and fail the // Allocation request type AllocateResponse struct { ContainerResponses []*ContainerAllocateResponse `protobuf:"bytes,1,rep,name=container_responses,json=containerResponses" json:"container_responses,omitempty"` } type ContainerAllocateResponse struct { // List of environment variable to be set in the container to access one of more devices. Envs map[string]string `protobuf:"bytes,1,rep,name=envs" json:"envs,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"` // Mounts for the container. Mounts []*Mount `protobuf:"bytes,2,rep,name=mounts" json:"mounts,omitempty"` // Devices for the container. Devices []*DeviceSpec `protobuf:"bytes,3,rep,name=devices" json:"devices,omitempty"` // Container annotations to pass to the container runtime Annotations map[string]string `protobuf:"bytes,4,rep,name=annotations" json:"annotations,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"` }
Allocate的代码实现如下:
// Allocate which return list of devices. func (m *NvidiaDevicePlugin) Allocate(ctx context.Context, reqs *pluginapi.AllocateRequest) (*pluginapi.AllocateResponse, error) { devs := m.devs responses := pluginapi.AllocateResponse{} for _, req := range reqs.ContainerRequests { response := pluginapi.ContainerAllocateResponse{ Envs: map[string]string{ "NVIDIA_VISIBLE_DEVICES": strings.Join(req.DevicesIDs, ","), }, } for _, id := range req.DevicesIDs { if !deviceExists(devs, id) { return nil, fmt.Errorf("invalid allocation request: unknown device: %s", id) } } responses.ContainerResponses = append(responses.ContainerResponses, &response) } return &responses, nil }
下面是其实现逻辑图:
Allocate中会遍历ContainerRequests,将DeviceIDs封装到ContainerAllocateResponse的
Envs:NVIDIA_VISIBLE_DEVICES
中,格式为:”${ID_1},${ID_2},...
”除此之外,并没有封装Mounts, Devices, Annotations。
关于如何进行NVIDIA及k8s-device-plugin源码分析问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
标题名称:如何进行NVIDIA及k8s-device-plugin源码分析
网页网址:http://myzitong.com/article/piejho.html