Numpy与Pytorch矩阵操作方式-创新互联

Numpy

为嘉峪关等地区用户提供了全套网页设计制作服务,及嘉峪关网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、嘉峪关网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

随机矩阵: np.random.randn(d0, d1, d2, ...)

矩阵大小与形状: np.ndarray.size 与 np.dnarray.shape

Pytorch

随机矩阵: torch.randn(d0, d1, d2, ...)

添加维度: tensor.unsqueeze(0)

压缩维度: tensor.squeeze(0)

按维度拼接tensor: torch.cat(inputs, dim=0, ...)

维度堆叠: torch.stack(inputs, dim=0)

张量排序索引: tensor.sort(descending=True) 返回一个tensor为排序后的tensor, 一个为index_tensor

矩阵元素夹逼: tensor.clamp()

矩阵切割: torch.chunk(tensor, chunks, dim)

矩阵复制: torch.repeat(*size)

生成零矩阵: torch.torch.zeros(5, 3, dtype=torch.long)

生产同形状的随机矩阵:x = torch.randn_like(x, dtype=torch.float)

矩阵中函数名以'_'结尾的,如:y.add_(x),运算结束后会改变y本身

以上这篇Numpy与Pytorch 矩阵操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持创新互联。


分享标题:Numpy与Pytorch矩阵操作方式-创新互联
标题链接:http://myzitong.com/article/ppdip.html