Storm流方式的统计系统怎么实现
本篇内容主要讲解“Storm流方式的统计系统怎么实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Storm流方式的统计系统怎么实现”吧!
公司主营业务:网站制作、网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出邵阳免费做网站回馈大家。
1: 初期硬件准备:
1 如果条件具备:请保证您安装好了 redis集群
2 配置好您的Storm开发环境
3 保证好您的开发环境的畅通: 主机与主机之间,Storm与redis之间
2:业务背景的介绍:
1 在这里我们将模拟一个 流方式的数据处理过程
2 数据的源头保存在我们的redis 集群之中
3 发射的数据格式为: ip,url,client_key
数据发射器
package storm.spout; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichSpout; import backtype.storm.tuple.Values; import backtype.storm.tuple.Fields; import org.json.simple.JSONObject; import org.json.simple.JSONValue; import redis.clients.jedis.Jedis; import storm.utils.Conf; import java.util.Map; import org.apache.log4j.Logger; /** * click Spout 从redis中间读取所需要的数据 */ public class ClickSpout extends BaseRichSpout { private static final long serialVersionUID = -6200450568987812474L; public static Logger LOG = Logger.getLogger(ClickSpout.class); // 对于redis,我们使用的是jedis客户端 private Jedis jedis; // 主机 private String host; // 端口 private int port; // Spout 收集器 private SpoutOutputCollector collector; @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { // 这里,我们发射的格式为 // IP,URL,CLIENT_KEY outputFieldsDeclarer.declare(new Fields(storm.cookbook.Fields.IP, storm.cookbook.Fields.URL, storm.cookbook.Fields.CLIENT_KEY)); } @Override public void open(Map conf, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { host = conf.get(Conf.REDIS_HOST_KEY).toString(); port = Integer.valueOf(conf.get(Conf.REDIS_PORT_KEY).toString()); this.collector = spoutOutputCollector; connectToRedis(); } private void connectToRedis() { jedis = new Jedis(host, port); } @Override public void nextTuple() { String content = jedis.rpop("count"); if (content == null || "nil".equals(content)) { try { Thread.sleep(300); } catch (InterruptedException e) { } } else { // 将jedis对象 rpop出来的字符串解析为 json对象 JSONObject obj = (JSONObject) JSONValue.parse(content); String ip = obj.get(storm.cookbook.Fields.IP).toString(); String url = obj.get(storm.cookbook.Fields.URL).toString(); String clientKey = obj.get(storm.cookbook.Fields.CLIENT_KEY) .toString(); System.out.println("this is a clientKey"); // List
在这个过程之中,请注意:
1 我们在 OPEN 方法之中初始化 host,port,collector,以及Redis的连接,调用Connect方法并连接到redis数据库
2 我们在nextTupe 取出数据,并且将他转换为一个JSON对象,并且拿到 ip,url,clientKey,同时将他们包装成为一个
Values对象
让我们来看看数据的流向图:
在我们的数据从clickSpout 读取以后,接下来,我们将采用2个bolt
1 : repeatVisitBolt
2 : geographyBolt
共同来读取同一个数据源的数据:clickSpout
3 细细察看 repeatVisitBolt
package storm.bolt; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import redis.clients.jedis.Jedis; import storm.utils.Conf; import java.util.Map; public class RepeatVisitBolt extends BaseRichBolt { private OutputCollector collector; private Jedis jedis; private String host; private int port; @Override public void prepare(Map conf, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; host = conf.get(Conf.REDIS_HOST_KEY).toString(); port = Integer.valueOf(conf.get(Conf.REDIS_PORT_KEY).toString()); connectToRedis(); } private void connectToRedis() { jedis = new Jedis(host, port); jedis.connect(); } public boolean isConnected() { if (jedis == null) return false; return jedis.isConnected(); } @Override public void execute(Tuple tuple) { String ip = tuple.getStringByField(storm.cookbook.Fields.IP); String clientKey = tuple .getStringByField(storm.cookbook.Fields.CLIENT_KEY); String url = tuple.getStringByField(storm.cookbook.Fields.URL); String key = url + ":" + clientKey; String value = jedis.get(key); // redis中取,如果redis中没有,就插入新的一条访问记录。 if (value == null) { jedis.set(key, "visited"); collector.emit(new Values(clientKey, url, Boolean.TRUE.toString())); } else { collector .emit(new Values(clientKey, url, Boolean.FALSE.toString())); } } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new backtype.storm.tuple.Fields( storm.cookbook.Fields.CLIENT_KEY, storm.cookbook.Fields.URL, storm.cookbook.Fields.UNIQUE)); } }
在这里,我们把url 和 clientKey 组合成为 【url:clientKey】的格式组合,并依据这个对象,在redis中去查找,如果没有,那那Set到redis中间去,并且判定它为【unique】
4:
package storm.bolt; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; import java.util.Map; public class VisitStatsBolt extends BaseRichBolt { private OutputCollector collector; private int total = 0; private int uniqueCount = 0; @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; } @Override public void execute(Tuple tuple) { //在这里,我们在上游来判断这个Fields 是否是独特和唯一的 boolean unique = Boolean.parseBoolean(tuple.getStringByField(storm.cookbook.Fields.UNIQUE)); total++; if(unique)uniqueCount++; collector.emit(new Values(total,uniqueCount)); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new backtype.storm.tuple.Fields(storm.cookbook.Fields.TOTAL_COUNT, storm.cookbook.Fields.TOTAL_UNIQUE)); } }
第一次出现,uv ++
5 接下来,看看流水线2 :
package storm.bolt; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import org.json.simple.JSONObject; import storm.cookbook.IPResolver; import java.util.HashMap; import java.util.List; import java.util.Map; /** * User: yin shaui Date: 2014/05/21 Time: 8:58 AM To change this template use * File | Settings | File Templates. */ public class GeographyBolt extends BaseRichBolt { // ip解析器 private IPResolver resolver; private OutputCollector collector; public GeographyBolt(IPResolver resolver) { this.resolver = resolver; } @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; } @Override public void execute(Tuple tuple) { // 1 从上级的目录之中拿到我们所要使用的ip String ip = tuple.getStringByField(storm.cookbook.Fields.IP); // 将ip 转换为json JSONObject json = resolver.resolveIP(ip); // 将 city和country 组织成为一个新的元祖,在这里也就是我们的Values对象 String city = (String) json.get(storm.cookbook.Fields.CITY); String country = (String) json.get(storm.cookbook.Fields.COUNTRY_NAME); collector.emit(new Values(country, city)); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { // 确定了我们这次输出元祖的格式 outputFieldsDeclarer.declare(new Fields(storm.cookbook.Fields.COUNTRY, storm.cookbook.Fields.CITY)); } }
以上Bolt,完成了一个Ip到 CITY,COUNTRY 的转换
package storm.bolt; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; public class GeoStatsBolt extends BaseRichBolt { private class CountryStats { // private int countryTotal = 0; private static final int COUNT_INDEX = 0; private static final int PERCENTAGE_INDEX = 1; private String countryName; public CountryStats(String countryName) { this.countryName = countryName; } private Map> cityStats = new HashMap >(); /** * @param cityName */ public void cityFound(String cityName) { countryTotal++; // 已经有了值,一个加1的操作 if (cityStats.containsKey(cityName)) { cityStats.get(cityName) .set(COUNT_INDEX, cityStats.get(cityName).get(COUNT_INDEX) .intValue() + 1); // 没有值的时候 } else { List list = new LinkedList (); list.add(1); list.add(0); cityStats.put(cityName, list); } double percent = (double) cityStats.get(cityName).get(COUNT_INDEX) / (double) countryTotal; cityStats.get(cityName).set(PERCENTAGE_INDEX, (int) percent); } /** * @return 拿到的国家总数 */ public int getCountryTotal() { return countryTotal; } /** * @param cityName 依据传入的城市名称,拿到城市总数 * @return */ public int getCityTotal(String cityName) { return cityStats.get(cityName).get(COUNT_INDEX).intValue(); } public String toString() { return "Total Count for " + countryName + " is " + Integer.toString(countryTotal) + "\n" + "Cities: " + cityStats.toString(); } } private OutputCollector collector; // CountryStats 是一个内部类的对象 private Map stats = new HashMap (); @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; } @Override public void execute(Tuple tuple) { String country = tuple.getStringByField(storm.cookbook.Fields.COUNTRY); String city = tuple.getStringByField(storm.cookbook.Fields.CITY); // 如果国家不存在的时候,新增加一个国家,国家的统计 if (!stats.containsKey(country)) { stats.put(country, new CountryStats(country)); } // 这里拿到新的统计,cityFound 是拿到某个城市的值 stats.get(country).cityFound(city); collector.emit(new Values(country, stats.get(country).getCountryTotal(), city, stats.get(country) .getCityTotal(city))); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new backtype.storm.tuple.Fields( storm.cookbook.Fields.COUNTRY, storm.cookbook.Fields.COUNTRY_TOTAL, storm.cookbook.Fields.CITY, storm.cookbook.Fields.CITY_TOTAL)); } }
有关地理位置的统计,附带上程序其他的使用类
package storm.cookbook; /** */ public class Fields { public static final String IP = "ip"; public static final String URL = "url"; public static final String CLIENT_KEY = "clientKey"; public static final String COUNTRY = "country"; public static final String COUNTRY_NAME = "country_name"; public static final String CITY = "city"; //唯一的,独一无二的 public static final String UNIQUE = "unique"; //城镇整数 public static final String COUNTRY_TOTAL = "countryTotal"; //城市整数 public static final String CITY_TOTAL = "cityTotal"; //总共计数 public static final String TOTAL_COUNT = "totalCount"; //总共独一无二的 public static final String TOTAL_UNIQUE = "totalUnique"; }
package storm.cookbook; import org.json.simple.JSONObject; import org.json.simple.JSONValue; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.Serializable; import java.net.MalformedURLException; import java.net.URL; import java.net.URLConnection; public class HttpIPResolver implements IPResolver, Serializable { static String url = "http://api.hostip.info/get_json.php"; @Override public JSONObject resolveIP(String ip) { URL geoUrl = null; BufferedReader in = null; try { geoUrl = new URL(url + "?ip=" + ip); URLConnection connection = geoUrl.openConnection(); in = new BufferedReader(new InputStreamReader( connection.getInputStream())); String inputLine; JSONObject json = (JSONObject) JSONValue.parse(in); in.close(); return json; } catch (IOException e) { e.printStackTrace(); } finally { // 每当in为空的时候我们不进行如下的close操作,只有在in不为空的时候进行close操作 if (in != null) { try { in.close(); } catch (IOException e) { } } } return null; } }
package storm.cookbook; import org.json.simple.JSONObject; /** * Created with IntelliJ IDEA. * User: admin * Date: 2012/12/07 * Time: 5:29 PM * To change this template use File | Settings | File Templates. */ public interface IPResolver { public JSONObject resolveIP(String ip); }
到此,相信大家对“Storm流方式的统计系统怎么实现”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
网站标题:Storm流方式的统计系统怎么实现
文章转载:http://myzitong.com/article/pphhgs.html