Spark性能优化的10大问题及其解决方案是什么
本篇文章给大家分享的是有关Spark性能优化的10大问题及其解决方案是什么,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
创新互联建站作为成都网站建设公司,专注成都网站建设、网站设计,有关成都企业网站建设方案、改版、费用等问题,行业涉及成都电动窗帘等多个领域,已为上千家企业服务,得到了客户的尊重与认可。
问题1:reduce task数目不合适
解决方案:
需要根据实际情况调整默认配置,调整方式是修改参数spark.default.parallelism。通常的,reduce数目设置为core数目的2-3倍。数量太大,造成很多小任务,增加启动任务的开销;数目太小,任务运行缓慢。所以要合理修改reduce的task数目即spark.default.parallelism
问题2:shuffle磁盘IO时间长
解决方案:
设置spark.local.dir为多个磁盘,并设置磁盘的IO速度快的磁盘,通过增加IO来优化shuffle性能;
问题3:map|reduce数量大,造成shuffle小文件数目多
解决方案:
通过设置spark.shuffle.consolidateFiles为true,来合并shuffle中间文件,此时文件数为reduce tasks数目;
问题4:序列化时间长、结果大
解决方案:
spark默认使用JDK 自带的ObjectOutputStream,这种方式产生的结果大、CPU处理时间长,可以通过设置spark.serializer为org.apache.spark.serializer.KeyoSerializer。
另外如果结果已经很大,那就最好使用广播变量方式了,结果你懂得。
问题5:单条记录消耗大
解决方案:
使用mapPartition替换map,mapPartition是对每个Partition进行计算,而map是对partition中的每条记录进行计算;
问题6 : collect输出大量结果时速度慢
解决方案:
collect源码中是把所有的结果以一个Array的方式放在内存中,可以直接输出到分布式的文件系统,然后查看文件系统中的内容;
问题7: 任务执行速度倾斜
解决方案:
如果数据倾斜,一般是partition key取得不好,可以考虑其他的并行处理方式,并在中间加上aggregation操作;如果是Worker倾斜,例如在某些Worker上的executor执行缓慢,可以通过设置spark.speculation=true 把那些持续慢的节点去掉;
问题8: 通过多步骤的RDD操作后有很多空任务或者小任务产生
解决方案:
使用coalesce或者repartition去减少RDD中partition数量;
问题9:Spark Streaming吞吐量不高
可以设置spark.streaming.concurrentJobs
问题10:Spark Streaming 运行速度突然下降了,经常会有任务延迟和阻塞
解决方案:
这是因为我们设置job启动interval时间间隔太短了,导致每次job在指定时间无法正常执行完成,换句话说就是创建的windows窗口时间间隔太密集了;
以上就是Spark性能优化的10大问题及其解决方案是什么,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。
当前题目:Spark性能优化的10大问题及其解决方案是什么
分享路径:http://myzitong.com/article/ppihog.html