怎么用Python爬取电影
这篇文章主要讲解了“怎么用Python爬取电影”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python爬取电影”吧!
10年积累的成都网站设计、成都网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站策划后付款的网站建设流程,更有金牛免费网站建设让你可以放心的选择与我们合作。
首先,我用python爬取了电影的所有弹幕,这个爬虫比较简单,就不细说了,直接上代码:
import requests import pandas as pd headers = { "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36" } url = 'https://mfm.video.qq.com/danmu?otype=json&target_id=6480348612%26vid%3Dh0035b23dyt' # 最终得到的能控制弹幕的参数是target_id和timestamp,tiemstamp每30请求一个包。 comids=[] comments=[] opernames=[] upcounts=[] timepoints=[] times=[] n=15 while True: data = { "timestamp":n} response = requests.get(url,headers=headers,params=data,verify=False) res = eval(response.text) #字符串转化为列表格式 con = res["comments"] if res['count'] != 0: #判断弹幕数量,确实是否爬取结束 n+=30 for j in con: comids.append(j['commentid']) opernames.append(j["opername"]) comments.append(j["content"]) upcounts.append(j["upcount"]) timepoints.append(j["timepoint"]) else: break data=pd.DataFrame({'id':comids,'name':opernames,'comment':comments,'up':upcounts,'pon':timepoints}) data.to_excel('发财日记弹幕.xlsx')
首先用padans读取弹幕数据
import pandas as pd data=pd.read_excel('发财日记弹幕.xlsx') data
近4万条弹幕,5列数据分别为“评论id”“昵称”“内容”“点赞数量”“弹幕位置”
将电影以6分钟为间隔分段,看每个时间段内弹幕的数量变化情况:
time_list=['{}'.format(int(i/60))for i in list(range(0,8280,360))] pero_list=[] for i in range(len(time_list)-1): pero_list.append('{0}-{1}'.format(time_list[i],time_list[i+1])) counts=[] for i in pero_list: counts.append(int(data[(data.pon>=int(i.split('-')[0])*60)&(data.pon从弹幕数量变化来看,早60分钟,120分钟左右分别出现2个峰值,说明这部电影至少有2个高潮
为了满足好奇心,我们一起分析一下前6分钟(不收费)以及2个前面大家都在说什么
1.看看前六分钟大家在说什么:
#词云代码 import jieba #词语切割 import wordcloud #分词 from wordcloud import WordCloud,ImageColorGenerator,STOPWORDS #词云,颜色生成器,停止 from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType from pyecharts import options as opts def ciyun(content): segment = [] segs = jieba.cut(content) # 使用jieba分词 for seg in segs: if len(seg) > 1 and seg != '\r\n': segment.append(seg) # 去停用词(文本去噪) words_df = pd.DataFrame({'segment': segment}) words_df.head() stopwords = pd.read_csv("stopword.txt", index_col=False, quoting=3, sep='\t', names=['stopword'], encoding="utf8") words_df = words_df[~words_df.segment.isin(stopwords.stopword)] words_stat = words_df.groupby('segment').agg(count=pd.NamedAgg(column='segment', aggfunc='size')) words_stat = words_stat.reset_index().sort_values(by="count", ascending=False) return words_statdata_6_text=''.join(data[(data.pon>=0)&(data.pon<360)]['comment'].values.tolist()) words_stat=ciyun(data_6_text) from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType words = [(i,j) for i,j in zip(words_stat['segment'].values.tolist(),words_stat['count'].values.tolist())] c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="{}".format('前6分钟'))) ) c.render_notebook()排名第一的是“小宝”,还出现了“好看”“支持”等字样,看来还是小宝还是挺受欢迎的
2.第一个高潮:
data_60_text=''.join(data[(data.pon>=54*60)&(data.pon<3600)]['comment'].values.tolist()) words_stat=ciyun(data_60_text) from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType words = [(i,j) for i,j in zip(words_stat['segment'].values.tolist(),words_stat['count'].values.tolist())] c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="{}".format('第一个高潮'))) ) c.render_notebook()排在前面的分别是“小宝”“二哥”“哈哈哈”“好看”等,说明肯定是小宝和二哥发生了什么搞笑的事
3.第二个高潮:
data_60_text=''.join(data[(data.pon>=120*60)&(data.pon<128*60)]['comment'].values.tolist()) words_stat=ciyun(data_60_text) from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType words = [(i,j) for i,j in zip(words_stat['segment'].values.tolist(),words_stat['count'].values.tolist())] c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="{}".format('第二个高潮'))) ) c.render_notebook()高频词中,发现“好看”“泪点”“哭哭”等字样,说明电影的结尾很感人
我们接着再挖一下发弹幕最多的人,看看他们都在说什么,因为部分弹幕没有昵称,所以需要先踢除:
data1=data[data['name'].notna()] data2=pd.DataFrame({'num':data1.value_counts(subset="name")}) #统计出现次数 data3=data2.reset_index() data3[data3.num>100] #找出弹幕数量大于100的人data_text='' for i in data3['name'].values.tolist(): data_text+=''.join(data[data.name==i]['comment'].values.tolist()) words_stat=ciyun(data_text) from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType words = [(i,j) for i,j in zip(words_stat['segment'].values.tolist(),words_stat['count'].values.tolist())] c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="{}".format('粉丝弹幕'))) ) c.render_notebook()感谢各位的阅读,以上就是“怎么用Python爬取电影”的内容了,经过本文的学习后,相信大家对怎么用Python爬取电影这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
分享标题:怎么用Python爬取电影
文章链接:http://myzitong.com/article/ppoees.html