第12课:SparkStreaming源码解读之Execu
Receiver接收到的数据交由ReceiverSupervisorImpl来管理。
创新互联公司主要从事网站制作、做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务西工,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575
ReceiverSupervisorImpl接收到数据后,会数据存储并且将数据的元数据报告给ReceiverTracker 。
Executor的数据容错可以有三种方式:
WAL日志
数据副本
接收receiver的数据流回放
/** Store block and report it to driver */ def pushAndReportBlock( receivedBlock: ReceivedBlock, metadataOption: Option[Any], blockIdOption: Option[StreamBlockId] ) { val blockId = blockIdOption.getOrElse(nextBlockId) val time = System.currentTimeMillis val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock) logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms") val numRecords = blockStoreResult.numRecords val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult) trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo)) logDebug(s"Reported block $blockId") }
数据的存储,是借助receiverBlockHandler,它的实现有两种方式:
private val receivedBlockHandler: ReceivedBlockHandler = { if (WriteAheadLogUtils.enableReceiverLog(env.conf)) { if (checkpointDirOption.isEmpty) { throw new SparkException( "Cannot enable receiver write-ahead log without checkpoint directory set. " + "Please use streamingContext.checkpoint() to set the checkpoint directory. " + "See documentation for more details.") } new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId, receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get) } else { new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel) } }
WriteAheadLogBaseBlockHandler 一方面将数据交由BlockManager管理,另一方面会写WAL日志。
一旦节点崩溃,可以由WAL日志恢复内存中的数据。在WAL开始时,就不在建议数据存储多个副本。
private val effectiveStorageLevel = { if (storageLevel.deserialized) { logWarning(s"Storage level serialization ${storageLevel.deserialized} is not supported when" + s" write ahead log is enabled, change to serialization false") } if (storageLevel.replication > 1) { logWarning(s"Storage level replication ${storageLevel.replication} is unnecessary when " + s"write ahead log is enabled, change to replication 1") } StorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, false, 1) }
而BlockManagerBaseBlockHandler直接将数据交由BlockManager管理。
如果不写WAL,当节点崩溃了一定会数据丢失吗? 这个也不一定。因为在构建WriteAheadLogBaseBlockHandler,和BlockManagerBaseBlockHandler的时候会将receiver的storageLevel传入。storageLevel用来描述数据保存的地方(内存、磁盘)以及副本个数。
class StorageLevel private( private var _useDisk: Boolean, private var _useMemory: Boolean, private var _useOffHeap: Boolean, private var _deserialized: Boolean, private var _replication: Int = 1) extends Externalizable
公有如下种类的StorageLevel:
val NONE = new StorageLevel(false, false, false, false) val DISK_ONLY = new StorageLevel(true, false, false, false) val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2) val MEMORY_ONLY = new StorageLevel(false, true, false, true) val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2) val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false) val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2) val MEMORY_AND_DISK = new StorageLevel(true, true, false, true) val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2) val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false) val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2) val OFF_HEAP = new StorageLevel(false, false, true, false)
默认情况,数据采用MEMORY_AND_DISK_2,也就是说数据会产生两个副本,并且内存不足时会写入磁盘。
数据的最终存储是由BlockManager完成并管理的:
def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = { var numRecords = None: Option[Long] val putResult: Seq[(BlockId, BlockStatus)] = block match { case ArrayBufferBlock(arrayBuffer) => numRecords = Some(arrayBuffer.size.toLong) blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel, tellMaster = true) case IteratorBlock(iterator) => val countIterator = new CountingIterator(iterator) val putResult = blockManager.putIterator(blockId, countIterator, storageLevel, tellMaster = true) numRecords = countIterator.count putResult case ByteBufferBlock(byteBuffer) => blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true) case o => throw new SparkException( s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}") } if (!putResult.map { _._1 }.contains(blockId)) { throw new SparkException( s"Could not store $blockId to block manager with storage level $storageLevel") } BlockManagerBasedStoreResult(blockId, numRecords) }
对于从kafka中直接读取数据,可以通过记录数据offset的方法来进行容错。如果程序崩溃,下次启动时,从上次未处理数据的offset再次读取数据即可。
备注:
1、DT大数据梦工厂微信公众号DT_Spark
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains
本文题目:第12课:SparkStreaming源码解读之Execu
网站地址:http://myzitong.com/article/pseggd.html